The National Science Foundation is seeking to support research on advanced learning technologies to improve education. The effort, called Cyberlearning: Transforming Education, includes research into developing technology products that would benefit teaching and learning. “What we want to do is have one program that will be looking at the future of learning technologies — the next generation,” said Janet Kolodner, an NSF program director.

Can online graphic novels help teenagers cope with difficult social situations? Are 3-D technologies a tool for helping English-learners acquire language skills outside traditional educational settings? And what about the potential for mobile apps that let students manipulate on-screen images with their fingers to help them learn fractions?

A federal program, still in its infancy, is supporting research that seeks to answer those and other questions by wedding partners that often operate in isolation—educational technology and scientific research on learning—with the goal of transforming teaching and learning in schools.

The federal government has been funding projects focused on technology and education for decades, and it has backed research on cognition in many forms. But the relatively new program, called Cyberlearning: Transforming Education, is the National Science Foundation’s attempt to create a space within the agency devoted to supporting research on advanced learning technologies. Such technologies are generally defined as tools that help people connect directly with what they’re learning and provide them with new opportunities to acquire knowledge in ways that would otherwise be out of reach.

“What we want to do is have one program that will be looking at the future of learning technologies—the next generation,” said Janet Kolodner, an NSF program director who is guiding the cyberlearning effort. “Some of [the projects] advance the technology itself. Some of them advance ways of using technology and the integration of technology within other technologies, and in new kinds of learning environments.”

Spawning Ideas

The agency, with headquarters in Arlington, Va., hopes the research will help spawn new technology products that can benefit schools, Ms. Kolodner said, but it is also seeking to back projects that will increase scientists’ and educators’ understanding of technology’s capacity to enhance student learning.

Since the cyberlearning program was launched about two years ago, it has awarded grants worth about $30 million for projects focused on an eclectic array of ideas and technologies. All of the projects funded by the cyberlearning program—about 50 so far—are expected to be grounded in scientific theories of learning, and learning with technology, specifically.

Technology changes constantly, and the digital tools that get used in classrooms are no exception. For that reason, the program’s greatest potential will come in its ability to produce research and designs that can spawn myriad new technologies and ideas, rather than any single product, said John Black, a professor of telecommunications and education at Teachers College, Columbia University.

Mr. Black is receiving funding through the cyberlearning program to examine the potential of using mobile applications to teach fractions, and specifically whether “embodied cognition”—the idea that learning is enhanced when people can feel or perform an activity, rather than just watch simulations of it—can help improve student learning. His project plans to use narratives, characters, and math content from “Cyberchase,” a math-focused TV show.

The importance of research that aspires to produce breakthroughs in technology and education and how it can be used is not always evident to the public, because the results of those projects can take so long to germinate, Mr. Black noted.

“It’s much easier to recognize the value of things that are a little bit beyond what we’ve already done,” he said, “as opposed to radical things.”

Projects Evolving

CONTINUE READING